Natural Language Inference in Natural Language Terms

Ido Dagan Bar-Ilan University, Israel

BIU NLP lab - Acknowledgments

What is **inference**?

From dictionary.com:

inferring:

to derive by reasoning; conclude or judge from premises or evidence.

 reasoning: the process of forming conclusions, judgments, or inferences from facts or premises.

What is **inference**?

From dictionary.com:

inferring:

to **derive** by reasoning; **conclude** or judge **from premises** or evidence.

 reasoning: the process of forming conclusions, judgments, or inferences from facts or premises.

Textual Inference

- Inferring new textual expressions from given ones
- Captures two types of inference:
 - 1. Inferences about the "extra-linguistic" world
 - it rained yesterday => it was wet yesterday
 - 2. Inferences about *language variability*
 - I <u>bought</u> a watch => I <u>purchased</u> a watch
- No definite boundary between the two

Textual Entailment –

a definition capturing textual inference

A directional relation between two text fragments: *Text (t)* and *Hypothesis (h):*

t entails $h(t \Rightarrow h)$ if humans reading t will infer that h is most likely true

- Operational (applied) definition:
 - Human gold standard
 - Assuming common background knowledge
 - Language & world knowledge

Motivation: Inference in Applications

QA:

<u>Question</u>: What affects blood pressure? "Salt causes an increase in blood pressure"

IE: X	purchase	Y
-------	----------	---

IBM	Coremetrics
Google	reMail
Yahoo	Overture

IR: Query: symptoms of IBS "IBS is characterized by vomiting"

Entailment in Multi-document Summarization

Hypothesis

Obama gave a speech last night in the Israeli lobby conference

In his speech at the American Israel Public Affairs Committee yesterday, the president challenged ...

Barack Obama's AIPAC address yesterday ...

Texts

Appeal of textual entailment definition

- Became a prominent view on textual inference
 RTE 1-7; 1950 hits in Google Scholar
- Much more concrete than:
 - "paraphrase"
 - bi-directional entailment / equivalence
 - "partial highly-covering entailment"
 - "similarity" very vague (non-scientific?) notion
- Additional textual inference types may be defined
 - But they should be **defined**, reasonably precisely

Evaluation: PASCAL RTE Challenges

	TEXT	HYPOTHESIS	TASK	ENTAIL- MENT
1	Regan attended a ceremony in Washington to commemorate the landings in Normandy.	Washington is located in Normandy.	IE	False
2	Google files for its long awaited IPO.	Google goes public.	IR	True
3	: a shootout at the Guadalajara airport in May, 1993, that killed Cardinal Juan Jesus Posadas Ocampo and six others.	Cardinal Juan Jesus Posadas Ocampo died in 1993.	QA	True
4	The SPD got just 21.5% of the vote in the European Parliament elections, while the conservative opposition parties polled 44.5%.	The SPD is defeated by the opposition parties.	IE	True

• Created utilizing (or simulating) reductions from real systems' output

Initial use of RTE systems in applications

QA

- Harabagiu & Hickl, ACL-06
- Answer Validation Exercise (AVE) at CLEF
- QallMe (FBK-irst, Magnini et al.)
- Relation extraction
 - Romano et al., EACL-06
- Educational applications
 - Nielsen et al., ACL-08 education workshop, SemEval/RTE-8
- Summarization
 - Harabagiu et al. 2007, Information Processing and Management
- MT evaluation and paraphrasing for MT (two ACL-2009 papers)

The Textual Entailment Task vs. Classical Approach to Inference

- Classical logic-based approach:
 - Natural language isn't suitable for conducting inference
 - Too vague, ambiguous, ...
 - We need to invent artificial languages (logics) that support inference

Textual inferences in practice – are based on NL representations

- Recognizing target expressions (QA, IE, ...)
 - Lexical substitutions and similarity
 - Matching syntactic and predicate patterns, semantic roles
 - Machine learning based on linguistic features
- Co-reference chains for discourse objects
- "Natural" name classes (vs. abstract classes)
 "football player", "coffee producer", ...

How should computers infer?

- > Alternative language-based approach:
 - Perform many inferences over natural language representations
 - May resort to extra-linguistic representations/inference when needed

Appeal of NL representations

If people think in NL, why shouldn't computers?...

- Saves the need of logic interpretation
 And the need to invent (and agree on!) logics
 NL representations are consensual and obtainable
- Easier to acquire inference knowledge
 Particularly with unsupervised learning methods
 - A great challenge more later...

Desiderata

- 1. Develop **principled & practical** <u>inference</u> over NL representations
 - Analogous to principled "logics" (learning based)
 - Most current applied inferences are ad-hoc (in RTE or application-specific)
- 2. Develop methods for acquiring vast inference <u>knowledge</u>
 - Represented in language structures
- 3. Develop generic <u>platforms/engines</u> that implement both of the above
- * Other fields as role models: MT, parsing similar investment needed!

Principled Learning-based Inference Mechanisms - over language structures

BINTEE

Knowledge and Tree-Edits in Learnable Entailment Proofs

Asher Stern and Ido Dagan (earlier partial version by Roy Bar-Haim)

Download at: <u>http://www.cs.biu.ac.il/~nlp/downloads/biutee</u>

Transformation-based Inference

Sequence of transformations (A proof)

$$\mathsf{T} = \mathsf{T}_0 \to \mathsf{T}_1 \to \mathsf{T}_2 \to \dots \to \mathsf{T}_n = \mathsf{H}$$

- Tree-Edits
 - Complete proofs by limited pre-defined set of operations
 - Estimate confidence in each operation
- Knowledge based Entailment Rules
 - Arbitrary knowledge-based transformations
 - Formalize many types of knowledge

Transformation based RTE - Example

$$\mathsf{T} = \mathsf{T}_0 \to \mathsf{T}_1 \to \mathsf{T}_2 \to \dots \to \mathsf{T}_n = \mathsf{H}$$

Text: The boy was located by the police. **Hypothesis:** Eventually, the police found the child.

Transformation based RTE - Example

BIUTEE's Inference Formalism

Analogy to logic proof systems:

Propositions	Parse Trees
Inference Steps	Tree transformation/generation
Proof	Sequence of generated trees: T T _i H

BIUTEE Goals

Rely on Entailment Rules

Supported by many types of knowledge

Tree Edits

Allow complete proofs

BIUTEE

- Integrates the benefits of both
- Estimate confidence of both

Challenges / System Components

How to ...

- 1. generate linguistically motivated complete proofs?
- 2. estimate proof confidence?
- 3. find the best proof?
- 4. learn the model parameters?

1. Generate linguistically motivated complete proofs

Bar-Haim et al. 2007. Semantic inference at the lexical-syntactic level.

Extended Tree Edits (On The Fly Operations)

- Predefined custom tree edits
 - Insert node on the fly
 - Move node / move sub-tree on the fly
 - Flip part of speech
 - ...
- Heuristically capture linguistic phenomena
 - Operation definition
 - Features to estimate confidence

Proof over Parse Trees - Example

$$T = T_0 \rightarrow T_1 \rightarrow T_2 \rightarrow \dots \rightarrow T_n = H$$

Text: The boy was located by the police. Passive to active The police located the boy. X locate $Y \rightarrow X$ find Y The police found the boy.

Boy \rightarrow child

The police found the <u>child</u>.

Tree-edit insertion

Hypothesis: Eventually, the police found the child.

Co-reference Substitution

- For co-referring subtrees S_1 , S_2 :
 - Copy source tree containing S_1 while replacing it with S_2

My brother is a musician. *He* plays the drums.

 \Rightarrow *My brother plays the drums.*

2. Estimate proof confidence

Cost based Model (Variant of Raina et al., 2005)

Define operation cost

- Represent each operation as a feature vector
- Cost is linear combination of feature values
- Define proof cost as the sum of the operations' costs
- Classify: *entailment* if and only if proof cost is lower than a threshold

Feature vector representation

Define operation feature value

Represent each operation as a feature vector

Features (Insert-Named-Entity, Insert-Verb, ..., WordNet, Lin, DIRT, ...)

Cost based Model

Define operation cost

- Cost is standard linear combination of feature values

Cost = weight-vector * feature-vector

Weight-vector is learned automatically

$$C_w(f(o)) = w^T \cdot f(o)$$

Confidence Model

Define operation cost
 Represent each operation as a feature vector
 Define proof cost as the sum of the operations' costs

i=1

Feature vector representation - example

$$\mathsf{T} = \mathsf{T}_0 \to \mathsf{T}_1 \to \mathsf{T}_2 \to \dots \to \mathsf{T}_n = \mathsf{H}$$

(0,0,....,1,0) **Text:** The boy was located by the police. ╋ Passive to active (0,0,.....0.457,...,0,0) The police located the boy. X locate Y \rightarrow X find Y ╋ The police found the boy. (0,0,....,0.5,....,0,0) Boy \rightarrow child ╋ The police found the child. $(0,0,1,\ldots,0,0)$ Insertion on the fly **Hypothesis:** Eventually, the police found the child. (0,0,1..0.5....0.457,....1,0)36
Cost based Model

- Define operation cost
 - Represent each operation as a feature vector
- Define proof cost as the sum of the operations' costs
- Classify: "entailing" if and only if proof cost is smaller than a threshold

$$\mathcal{W}^{T} \cdot f(P) < \mathcal{D}$$

3. Find the best proof

Search the best proof

T - HProof #1 $T \rightarrow \cdots \rightarrow H$ Proof #2 $T \rightarrow \cdots \rightarrow H$ Proof #3 $T \rightarrow \cdots \rightarrow H$ Proof #4 $T \rightarrow \cdots \rightarrow H$

Search the best proof

$T \rightarrow H$

Proof #1 $T \rightarrow \cdots \rightarrow H \times$ Proof #2 $T \rightarrow \cdots \rightarrow H \checkmark$ Proof #3 $T \rightarrow \cdots \rightarrow H \times$ Proof #4 $T \rightarrow \cdots \rightarrow H \times$

$T \twoheadrightarrow H$

Proof #1	T-∕∕∕∕→H ×
Proof #2	T
Proof #3	T–∕∕∕∕→H ×
Proof #4	T–∕∕∕∕→H ×

- Need to consider the "best" proof for the positive pairs
- "Best Proof" = proof with lowest cost
 - Assuming a weight vector is given
- Search space exponential AI-style search (ACL-12)
 - Gradient-based evaluation function
 - Local lookahead for "complex" operations

4. Learn model parameters

Goal: Learn parameters (w, b)
 Use a linear learning algorithm
 logistic regression

Inference vs. Learning

Inference vs. Learning

Iterative Learning Scheme

Summary- System Components

How to

- 1. Generate syntactically motivated complete proofs?
 - Entailment rules
 - On the fly operations (Extended Tree Edit Operations)
- 2. Estimate proof validity?
 - Confidence Model
- 3. Find the best proof?
 - Novel search Algorithm
- 4. Learn the model parameters?
 - Iterative Learning Scheme

Results RTE 1-5

Norman fitter worker Text: Hypothesis: Text: S: tothe gooning and Hypothesis:

Evaluation by accuracy – comparison with transformation-based systems

System	RTE-1	RTE-2	RTE-3	RTE-5
Raina et al. 2005	57.0			
Harmeling, 2009		56.39	57.88	
Wang and Manning, 2010		63.0	61.10	
Bar-Haim et al., 2007			61.12	63.80
Mehdad and Magnini, 2009	58.62	59.87	62.4	60.2
Our System	57.13	61.63	67.13	63.50

Results RTE 6

I draw a dot in the middle of a square and call that dot the self, the essence. In acting, everything must pass through that dot. The wildest style, the most absurd, the natural, the "be yourself," all must pass through. It takes rigor and constancy. Good actors work this way by inclination and training.

Acting is a paradox. The lie a good actor tells: What's Hecuba to him...) is catharsis. It's a cleansing. It can't happen unless the actor passes the lie through that dot of self, of reality.

Natural distribution of entailments Evaluation by Recall / Precision / F1

RTE 6 (F1%)			
Base line (Use IR top-5 relevance)	34.63		
Median (2010)	36.14		
Best (2010)	48.01		
Our system	49.54		

Conclusions – The BIUTEE Inference Engine

- Inference as proof over parse trees
 Natural to incorporate many inference types
- Results close to best or best on RTEs

Open Source

- Configurable
- Extensible
- Visual tracing
- Support

Adding extra-linguistic inferences

- Some tasks may benefit from extra-linguistic "expert" inferences
 - Temporal / arithmetic / spatial reasoning / ...
 - 2 soldiers and a civilian => 3 people
- Need to integrate with primary inference over language structures
 - "Expert" may detect on the fly inferences that would bridge text and hypothesis,
 - Interleaved within tree-generation process

Slide from Inderjeet Mani

RCC-8 Mereotopology

- 1. $\underline{DC}(x, y) \stackrel{\text{def}}{=} \sim \underline{Connect}(x, y).$
- 2. Part(x, y) $\leq \forall z \operatorname{Connect}(z, x) \rightarrow \operatorname{Connect}(z, y).$
- 3. <u>EQ(x, y)</u> \leq Part(x, y) \land Part(y, x).
- 4. Overlap(x, y) $\leq \exists z \operatorname{Part}(z, x) \land \operatorname{Part}(z, y)$.
- 5. <u>EC(x, y)</u> \leq Connect(x, y) $\land \sim$ Overlap(x, y).
- 6. $PO(x, y) \triangleq Overlap(x, y) \land \neg Part(x, y) \land \neg Part(y, x).$
- 7. $PP(x, y) \triangleq Part(x, y) \land not Part(y, x).$
- 8. <u>TPP(x, y) \leq PP(x, y) $\land \exists z[EC(z, x) \land EC(z, y)]$ </u>
- 9. <u>NTPP(x, y)</u> $\stackrel{\text{def}}{=}$ PP(x, y) $\land \neg \exists z[EC(z, x) \land EC(z, y)].$

Disconnected (DC): A and B do not touch each other. Externally Connected (EC): A and B touch each other at their boundaries.

Partial Overlap (PO): A and B overlap each other in Euclidean space.

Equal (EQ): A and B occupy the exact same Euclidean space.

Tangential Proper Part (TPP): A is inside B and touches the boundary of B.

Non-tangential Proper Part (NTPP): A is inside B and does not touch the boundary of B.

Related Research Lines

- RTE via tree edits
 - Learning edit costs, compute Tree-Edit-Distance
 - Mehdad & Magnini 2009; Heilman & Smith 2010; Wang & Manning 2010
- Text-to-text generation
 - Cf. ACL-2011 workshop, Smith's invited talk
- Paraphrasing recognition, generation
- Richer discourse-level inferences
 - Mirkin at al. 2010 (merging, bridging)
 - Implicit argument detection
 - Gerber 2010, SemEval task 2010, Ruppenhofer et al. 2011
- Recovering implicit relations
 - Nakov & Kozareva 2011
- Natural logic
 - MacCartney & Manning 2009

Lexical Textual Inference [Eyal Shnarch]

- Lexical inference rules link terms from T to H
- Lexical rules come from *lexical resources*
- H is inferred from T iff all its terms are inferred

lexical textual inference

principled probabilistic model

Improves state-of-the-art

Probabilistic model – forward inference

Backward witnesses model

PLIS - Probabilistic Lexical Inference System

```
Acquiring Inference
Knowledge
- over language structures
```

Knowledge acquisition sources

- Learning from corpora
- Mining human-oriented knowledge resources
 - Wikipedia, dictionary definitions
- Computational NLP resources
 - □ WN, FrameNet, NOMLEX, ...
- Manual knowledge engineering
 Recent Mechanical Turk potential

Distributional similarity (Symmetric)

- Most similar words for *food* (Lin, 1998)
 - Symmetric measure often identifies "sister" terms

meat	clothing	water	sugar
beverage	foodstuff	coffee	material
goods	textile	meal	chemical
medicine	fruit	tobacco	equipment
drink	feed	fuel	rice

Directional similarity – Feature Inclusion

Kotlerman et al. (2009)

Most directionally-similar words for *food* :

foodstuff	ration	blanket	margarine
food product	drinking water	soup	dessert
food company	wheat flour	biscuit	cookie
noodle	grocery	sweetener	sauce
canned food	beverage	meat	ingredient
feed	snack	agribusiness	meal
salad dressing	dairy product	diet	vegetable
bread	hamburger	medicine	vegetable oil
food aid	chocolate	food supply	herb
drink	seafood	fruit juice	milk

Extraction from Wikipedia

E.T. the Extra-Terrestrial

From Wikipedia, the free encyclopedia (Redirected from E.T. (film))

E.T. the Extra-Terrestrial is a 1982 science fiction film co-produced and directed by Steven Spielberg, written by Melissa Mathison and starring Henry Thomas, Robert MacNaughton, Drew Barrymore, Dee Wallace and Peter Coyote. It tells the story of Elliott (played by Thomas), a lonely boy who befriends a friendly <u>alien</u> dubbed "E.T.", who is stranded on Earth. Elliott and hi

Be-complement
Redirect
Parenthesis
Link

Learning Entailment-rule Graphs

- Berant et al. series of works increasing scalability: ACL-2010, ACL-2011 (best paper by student), ACL-2012
- Example target hierarchy (medical domain):

Global Optimization of Graph Edges $\hat{G} = \arg \max \sum f(u, v) \cdot I_{uv}$ $u \neq v$ $\forall u, v, w \in V.I_{uv} + I_{vw} - I_{uw} \leq 1$ 1 $\forall (u, v) \in NEG.I_{uv} = 0$ u W $\forall (u, v) \in POS.I_{uv} = 1$ () $I_{uv} \in \{0,1\}$

- Integer Linear Program
 - Optimize global edge scores under transitivity and other constraints

Syntactic-driven Entailments

- Active-passive transformations
- Recover relative clause arguments
- Extract conjuncts
- Appositions

- TruthTeller. annotate truth for predicates and clauses
 - Positive: John called(+) Mary.
 - Negative: John forgot to call(-) Mary.
 - Unknown: John wanted to call(?) Mary.
- Constructed via human linguistic engineering
 May be combined with automatic learning

Mechanical Turk & Community Knowledge-engineering

Validating automatically-learned rules
 Generating paraphrases/entailments
 Zeichner et al., ACL-2012

Potential for community contribution
 Stipulating domain knowledge in NL

finally going to pay off

Context matching

Context Matching generalizes sense matching

- Does aliens in T match the meaning of outer-space ?
- □ Does 'children acquire English' match X acquire Y \Rightarrow X learn Y?

Contextual Preferences

- A generic context validation framework for entailment rules
 - Szpektor & Dagan, ACL-08
 - Classification-based approach (Mirkin et al., TextInfer 2011)
- Match hypothesis, rules and text only in suitable contexts
- An alternative to explicit WSD

BIUTEE Demo

EXCITEMENT: towards *Textual-inference Platform*

- Open source & community

A Textual Inference Platform

- Starting with BIUTEE, moving to **EXCITEMENT**
 - Goal: build MOSES-like environment
 - Incorporate partners' inference systems
 - Addressing two types of research communities:
 - Applications which can benefit from textual inference
 - Technologies which can improve inference technology

Partners:

- Academic: FBK, Heidelberg, DFKI, Bar-Ilan
- Industriacl: NICE (Israel), AlmaWave (Italy), OMQ (Germany)

Future: Extended Operation modes

• **Recognition:** recognize entailment given *T/H* pair

Validation in applications

Search: given *H* and corpus/doc, find all entailing texts

- Multi-document summarization (RTE-5 pilot & RTE-6)
- □ QA, IR, IE against corpus/doc
- Use entailment knowledge to generate expanded queries

Generation: given text, generate all entailed statements

- Paraphrase generation for MT
- Unsupervised IE generate "canonical" propositions

Functionality extensions

- □ Include **variables** in hypothesis (perform extraction IE, QA, ...)
- Partial entailment: identify entailments of parts of h

• • • •

Takeout

- Time to develop *textual inference* Generic, applied, principled
- Proposal:
 - Base core inference on language-based representations
 - Parse trees, co-references, lexical contexts, ...
 - Extra-linguistic/logical inference for specific suitable cases
- Breakthrough potential current and future applications
- It's a long-term endeavor, but it's here!

http://www.cs.biu.ac.il/~nlp/downloads/biutee

